Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365230

RESUMEN

Hadarchaeota inhabit subsurface and hydrothermally heated environments, but previous to this study, they had not been cultured. Based on metagenome-assembled genomes, most Hadarchaeota are heterotrophs that grow on sugars and amino acids, or oxidize carbon monoxide or reduce nitrite to ammonium. A few other metagenome-assembled genomes encode alkyl-coenzyme M reductases (Acrs), ß-oxidation, and Wood-Ljungdahl pathways, pointing toward multicarbon alkane metabolism. To identify the organisms involved in thermophilic oil degradation, we established anaerobic sulfate-reducing hexadecane-degrading cultures from hydrothermally heated sediments of the Guaymas Basin. Cultures at 70°C were enriched in one Hadarchaeon that we propose as Candidatus Cerberiarchaeum oleivorans. Genomic and chemical analyses indicate that Ca. C. oleivorans uses an Acr to activate hexadecane to hexadecyl-coenzyme M. A ß-oxidation pathway and a tetrahydromethanopterin methyl branch Wood-Ljungdahl (mWL) pathway allow the complete oxidation of hexadecane to CO2. Our results suggest a syntrophic lifestyle with sulfate reducers, as Ca. C. oleivorans lacks a sulfate respiration pathway. Comparative genomics show that Acr, mWL, and ß-oxidation are restricted to one family of Hadarchaeota, which we propose as Ca. Cerberiarchaeaceae. Phylogenetic analyses further indicate that the mWL pathway is basal to all Hadarchaeota. By contrast, the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex in Ca. Cerberiarchaeaceae was horizontally acquired from Bathyarchaeia. The Acr and ß-oxidation genes of Ca. Cerberiarchaeaceae are highly similar to those of other alkane-oxidizing archaea such as Ca. Methanoliparia and Ca. Helarchaeales. Our results support the use of Acrs in the degradation of petroleum alkanes and suggest a role of Hadarchaeota in oil-rich environments.


Asunto(s)
Alcanos , Mesna , Anaerobiosis , Filogenia , Alcanos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Sulfatos/metabolismo
2.
Environ Microbiol ; 26(2): e16568, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268397

RESUMEN

The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015-2019; 5-100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.


Asunto(s)
Ecosistema , Microbiota , Clorofila , Metagenoma , Regiones Árticas , Agua
3.
ISME J ; 17(10): 1612-1625, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422598

RESUMEN

The Arctic Ocean is experiencing unprecedented changes because of climate warming, necessitating detailed analyses on the ecology and dynamics of biological communities to understand current and future ecosystem shifts. Here, we generated a four-year, high-resolution amplicon dataset along with one annual cycle of PacBio HiFi read metagenomes from the East Greenland Current (EGC), and combined this with datasets spanning different spatiotemporal scales (Tara Arctic and MOSAiC) to assess the impact of Atlantic water influx and sea-ice cover on bacterial communities in the Arctic Ocean. Densely ice-covered polar waters harboured a temporally stable, resident microbiome. Atlantic water influx and reduced sea-ice cover resulted in the dominance of seasonally fluctuating populations, resembling a process of "replacement" through advection, mixing and environmental sorting. We identified bacterial signature populations of distinct environmental regimes, including polar night and high-ice cover, and assessed their ecological roles. Dynamics of signature populations were consistent across the wider Arctic; e.g. those associated with dense ice cover and winter in the EGC were abundant in the central Arctic Ocean in winter. Population- and community-level analyses revealed metabolic distinctions between bacteria affiliated with Arctic and Atlantic conditions; the former with increased potential to use bacterial- and terrestrial-derived substrates or inorganic compounds. Our evidence on bacterial dynamics over spatiotemporal scales provides novel insights into Arctic ecology and indicates a progressing Biological Atlantification of the warming Arctic Ocean, with consequences for food webs and biogeochemical cycles.


Asunto(s)
Ecosistema , Agua , Cubierta de Hielo/microbiología , Cadena Alimentaria , Regiones Árticas , Bacterias/genética
4.
Nat Microbiol ; 8(4): 651-665, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894632

RESUMEN

Members of the bacterial genus Sulfurimonas (phylum Campylobacterota) dominate microbial communities in marine redoxclines and are important for sulfur and nitrogen cycling. Here we used metagenomics and metabolic analyses to characterize a Sulfurimonas from the Gakkel Ridge in the Central Arctic Ocean and Southwest Indian Ridge, showing that this species is ubiquitous in non-buoyant hydrothermal plumes at Mid Ocean Ridges across the global ocean. One Sulfurimonas species, USulfurimonas pluma, was found to be globally abundant and active in cold (<0-4 °C), oxygen-saturated and hydrogen-rich hydrothermal plumes. Compared with other Sulfurimonas species, US. pluma has a reduced genome (>17%) and genomic signatures of an aerobic chemolithotrophic metabolism using hydrogen as an energy source, including acquisition of A2-type oxidase and loss of nitrate and nitrite reductases. The dominance and unique niche of US. pluma in hydrothermal plumes suggest an unappreciated biogeochemical role for Sulfurimonas in the deep ocean.


Asunto(s)
Microbiota , Agua de Mar , Agua de Mar/microbiología , Bacterias/genética , Hidrógeno/metabolismo , Oxígeno/metabolismo
5.
Nat Commun ; 13(1): 6517, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316329

RESUMEN

The Aurora hydrothermal system, Arctic Ocean, hosts active submarine venting within an extensive field of relict mineral deposits. Here we show the site is associated with a neovolcanic mound located within the Gakkel Ridge rift-valley floor, but deep-tow camera and sidescan surveys reveal the site to be ≥100 m across-unusually large for a volcanically hosted vent on a slow-spreading ridge and more comparable to tectonically hosted systems that require large time-integrated heat-fluxes to form. The hydrothermal plume emanating from Aurora exhibits much higher dissolved CH4/Mn values than typical basalt-hosted hydrothermal systems and, instead, closely resembles those of high-temperature ultramafic-influenced vents at slow-spreading ridges. We hypothesize that deep-penetrating fluid circulation may have sustained the prolonged venting evident at the Aurora hydrothermal field with a hydrothermal convection cell that can access ultramafic lithologies underlying anomalously thin ocean crust at this ultraslow spreading ridge setting. Our findings have implications for ultra-slow ridge cooling, global marine mineral distributions, and the diversity of geologic settings that can host abiotic organic synthesis - pertinent to the search for life beyond Earth.


Asunto(s)
Respiraderos Hidrotermales , Agua de Mar , Geología , Calor , Regiones Árticas
7.
Nat Commun ; 13(1): 5160, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056000

RESUMEN

In the deep ocean symbioses between microbes and invertebrates are emerging as key drivers of ecosystem health and services. We present a large-scale analysis of microbial diversity in deep-sea sponges (Porifera) from scales of sponge individuals to ocean basins, covering 52 locations, 1077 host individuals translating into 169 sponge species (including understudied glass sponges), and 469 reference samples, collected anew during 21 ship-based expeditions. We demonstrate the impacts of the sponge microbial abundance status, geographic distance, sponge phylogeny, and the physical-biogeochemical environment as drivers of microbiome composition, in descending order of relevance. Our study further discloses that fundamental concepts of sponge microbiology apply robustly to sponges from the deep-sea across distances of >10,000 km. Deep-sea sponge microbiomes are less complex, yet more heterogeneous, than their shallow-water counterparts. Our analysis underscores the uniqueness of each deep-sea sponge ground based on which we provide critical knowledge for conservation of these vulnerable ecosystems.


Asunto(s)
Microbiota , Poríferos , Animales , Biodiversidad , Filogenia , Simbiosis
8.
Front Microbiol ; 13: 999925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160263

RESUMEN

Automated sampling technologies can enhance the temporal and spatial resolution of marine microbial observations, particularly in remote and inaccessible areas. A critical aspect of automated microbiome sampling is the preservation of nucleic acids over long-term autosampler deployments. Understanding the impact of preservation method on microbial metabarcoding is essential for implementing genomic observatories into existing infrastructure, and for establishing best practices for the regional and global synthesis of data. The present study evaluates the effect of two preservatives commonly used in autosampler deployments (mercuric chloride and formalin) and two extraction kits (PowerWater and NucleoSpin) on amplicon sequencing of 16S and 18S rRNA gene over 50 weeks of sample storage. Our results suggest the combination of mercuric chloride preservation and PowerWater extraction as most adequate for 16S and 18S rRNA gene amplicon-sequencing from the same seawater sample. This approach provides consistent information on species richness, diversity and community composition in comparison to control samples (nonfixed, filtered and frozen) when stored up to 50 weeks at in situ temperature. Preservation affects the recovery of certain taxa, with specific OTUs becoming overrepresented (SAR11 and diatoms) or underrepresented (Colwellia and pico-eukaryotes) after preservation. In case eukaryotic sequence information is the sole target, formalin preservation and NucleoSpin extraction performed best. Our study contributes to the design of long-term autonomous microbial observations in remote ocean areas, allowing cross-comparison of microbiome dynamics across sampling devices (e.g., water and particle samplers) and marine realms.

9.
Annu Rev Microbiol ; 76: 553-577, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35917471

RESUMEN

Alkanes are saturated apolar hydrocarbons that range from their simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates. Our understanding of the diversity of uncultured alkane-oxidizing archaea has expanded through the use of environmental metagenomics and enrichment cultures of syntrophic methane-, ethane-, propane-, and butane-oxidizing marine archaea with sulfate-reducing bacteria. A recently cultured group of archaea directly couples long-chain alkane degradation with methane formation, expanding the range of substrates used for methanogenesis. This article summarizes the rapidly growing knowledge of the diversity, physiology, and habitat distribution of alkane-degrading archaea.


Asunto(s)
Alcanos , Archaea , Alcanos/metabolismo , Anaerobiosis , Metano/metabolismo , Oxidación-Reducción , Filogenia
10.
PLoS Biol ; 20(1): e3001508, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986141

RESUMEN

The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.


Asunto(s)
Archaea , Electrones , Anaerobiosis , Archaea/genética , Archaea/metabolismo , Genómica , Sedimentos Geológicos/microbiología , Metano/metabolismo , Oxidación-Reducción , Filogenia , Sulfatos/metabolismo
11.
Nat Commun ; 12(1): 7309, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911949

RESUMEN

The ocean moderates the world's climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.


Asunto(s)
Carbono/análisis , Cubierta de Hielo/química , Agua de Mar/química , Océano Atlántico , Ciclo del Carbono , Cambio Climático , Ecosistema , Groenlandia , Terranova y Labrador
12.
Commun Biol ; 4(1): 1255, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732822

RESUMEN

Arctic Ocean sea ice cover is shrinking due to warming. Long-term sediment trap data shows higher export efficiency of particulate organic carbon in regions with seasonal sea ice compared to regions without sea ice. To investigate this sea-ice enhanced export, we compared how different early summer phytoplankton communities in seasonally ice-free and ice-covered regions of the Fram Strait affect carbon export and vertical dispersal of microbes. In situ collected aggregates revealed two-fold higher carbon export of diatom-rich aggregates in ice-covered regions, compared to Phaeocystis aggregates in the ice-free region. Using microbial source tracking, we found that ice-covered regions were also associated with more surface-born microbial clades exported to the deep sea. Taken together, our results showed that ice-covered regions are responsible for high export efficiency and provide strong vertical microbial connectivity. Therefore, continuous sea-ice loss may decrease the vertical export efficiency, and thus the pelagic-benthic coupling, with potential repercussions for Arctic deep-sea ecosystems.


Asunto(s)
Ciclo del Carbono , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Microbiota/fisiología , Archaea/metabolismo , Regiones Árticas , Bacterias/metabolismo , Océanos y Mares
13.
Sci Adv ; 7(25)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34134989

RESUMEN

Today's oceans store as much dissolved organic carbon (DOC) in the water column as there is CO2 in the atmosphere, and as such dissolved organic matter (DOM) is an important component of the global carbon cycle. It was shown that in anoxic marine sediments, reduced sulfur species (e.g., H2S) abiotically react with organic matter, contributing to carbon preservation. It is not known whether such processes also contribute to preserving DOM in ocean waters. Here, we show DOM sulfurization within the sulfidic waters of the Black Sea, by combining elemental, isotopic, and molecular analyses. Dissolved organic sulfur (DOS) is formed largely in the water column and not derived from sediments or allochthonous nonmarine sources. Our findings suggest that during large-scale anoxic events, DOM may accumulate through abiotic reactions with reduced sulfur species, having long-lasting effects on global climate by enhancing organic carbon sequestration.

14.
Front Microbiol ; 12: 658803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040593

RESUMEN

The Arctic is impacted by climate warming faster than any other oceanic region on Earth. Assessing the baseline of microbial communities in this rapidly changing ecosystem is vital for understanding the implications of ocean warming and sea ice retreat on ecosystem functioning. Using CARD-FISH and semi-automated counting, we quantified 14 ecologically relevant taxonomic groups of bacterioplankton (Bacteria and Archaea) from surface (0-30 m) down to deep waters (2,500 m) in summer ice-covered and ice-free regions of the Fram Strait, the main gateway for Atlantic inflow into the Arctic Ocean. Cell abundances of the bacterioplankton communities in surface waters varied from 105 cells mL-1 in ice-covered regions to 106 cells mL-1 in the ice-free regions. Observations suggest that these were overall driven by variations in phytoplankton bloom conditions across the Strait. The bacterial groups Bacteroidetes and Gammaproteobacteria showed several-fold higher cell abundances under late phytoplankton bloom conditions of the ice-free regions. Other taxonomic groups, such as the Rhodobacteraceae, revealed a distinct association of cell abundances with the surface Atlantic waters. With increasing depth (>500 m), the total cell abundances of the bacterioplankton communities decreased by up to two orders of magnitude, while largely unknown taxonomic groups (e.g., SAR324 and SAR202 clades) maintained constant cell abundances throughout the entire water column (ca. 103 cells mL-1). This suggests that these enigmatic groups may occupy a specific ecological niche in the entire water column. Our results provide the first quantitative spatial variations assessment of bacterioplankton in the summer ice-covered and ice-free Arctic water column, and suggest that further shift toward ice-free Arctic summers with longer phytoplankton blooms can lead to major changes in the associated standing stock of the bacterioplankton communities.

15.
Curr Biol ; 31(8): R368-R370, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33905688

RESUMEN

In 2016, the research ice-breaker Polarstern surveyed the submerged peaks of the permanently ice-covered Langseth Ridge, a tectonic feature comprising the Karasik seamount and two deeper seamount peaks, abutting the Gakkel ultra-slow spreading ridge (87°N 62°E to 85.5°N 57.4°E)1. A towed marine camera sled and a hybrid remotely operated vehicle revealed these peaks to be covered by a dense demosponge community, at first glance reminiscent of North Atlantic Geodia grounds (sensu2). Sponges were observed on top of a thick layer of spicule mat (Figure 1 and Video S1), intermixed with underlying layers of empty siboglinid tubes and bivalve shells, a substrate covering almost the entire seafloor. We observed trails of densely interwoven spicules connected directly to the underside or lower flanks of sponge individuals (Figure 1), suggesting these trails are traces of motile sponges. This is the first time abundant sponge trails have been observed in situ and attributed to sponge mobility. Given the low primary production in this permanently ice-covered region, these trails may relate to feeding behavior and/or a strategy for dispersal of juveniles. Such trails may remain visible for long periods given the regionally low sedimentation rates.


Asunto(s)
Cubierta de Hielo , Locomoción , Poríferos/fisiología , Animales , Regiones Árticas
16.
Front Microbiol ; 12: 637526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664723

RESUMEN

Microbial communities of the Arctic Ocean are poorly characterized in comparison to other aquatic environments as to their horizontal, vertical, and temporal turnover. Yet, recent studies showed that the Arctic marine ecosystem harbors unique microbial community members that are adapted to harsh environmental conditions, such as near-freezing temperatures and extreme seasonality. The gene for the small ribosomal subunit (16S rRNA) is commonly used to study the taxonomic composition of microbial communities in their natural environment. Several primer sets for this marker gene have been extensively tested across various sample sets, but these typically originated from low-latitude environments. An explicit evaluation of primer-set performances in representing the microbial communities of the Arctic Ocean is currently lacking. To select a suitable primer set for studying microbiomes of various Arctic marine habitats (sea ice, surface water, marine snow, deep ocean basin, and deep-sea sediment), we have conducted a performance comparison between two widely used primer sets, targeting different hypervariable regions of the 16S rRNA gene (V3-V4 and V4-V5). We observed that both primer sets were highly similar in representing the total microbial community composition down to genus rank, which was also confirmed independently by subgroup-specific catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) counts. Each primer set revealed higher internal diversity within certain bacterial taxonomic groups (e.g., the class Bacteroidia by V3-V4, and the phylum Planctomycetes by V4-V5). However, the V4-V5 primer set provides concurrent coverage of the archaeal domain, a relevant component comprising 10-20% of the community in Arctic deep waters and the sediment. Although both primer sets perform similarly, we suggest the use of the V4-V5 primer set for the integration of both bacterial and archaeal community dynamics in the Arctic marine environment.

17.
ISME Commun ; 1(1): 76, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37938651

RESUMEN

The Arctic Ocean features extreme seasonal differences in daylight, temperature, ice cover, and mixed layer depth. However, the diversity and ecology of microbes across these contrasting environmental conditions remain enigmatic. Here, using autonomous samplers and sensors deployed at two mooring sites, we portray an annual cycle of microbial diversity, nutrient concentrations and physical oceanography in the major hydrographic regimes of the Fram Strait. The ice-free West Spitsbergen Current displayed a marked separation into a productive summer (dominated by diatoms and carbohydrate-degrading bacteria) and regenerative winter state (dominated by heterotrophic Syndiniales, radiolarians, chemoautotrophic bacteria, and archaea). The autumn post-bloom with maximal nutrient depletion featured Coscinodiscophyceae, Rhodobacteraceae (e.g. Amylibacter) and the SAR116 clade. Winter replenishment of nitrate, silicate and phosphate, linked to vertical mixing and a unique microbiome that included Magnetospiraceae and Dadabacteriales, fueled the following phytoplankton bloom. The spring-summer succession of Phaeocystis, Grammonema and Thalassiosira coincided with ephemeral peaks of Aurantivirga, Formosa, Polaribacter and NS lineages, indicating metabolic relationships. In the East Greenland Current, deeper sampling depth, ice cover and polar water masses concurred with weaker seasonality and a stronger heterotrophic signature. The ice-related winter microbiome comprised Bacillaria, Naviculales, Polarella, Chrysophyceae and Flavobacterium ASVs. Low ice cover and advection of Atlantic Water coincided with diminished abundances of chemoautotrophic bacteria while others such as Phaeocystis increased, suggesting that Atlantification alters microbiome structure and eventually the biological carbon pump. These insights promote the understanding of microbial seasonality and polar night ecology in the Arctic Ocean, a region severely affected by climate change.

18.
mBio ; 11(2)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317322

RESUMEN

Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes.


Asunto(s)
Anaerobiosis , Archaea/metabolismo , Etano/metabolismo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biomarcadores , Metabolismo Energético , Genoma Arqueal , Genómica/métodos , Sedimentos Geológicos/microbiología , Respiraderos Hidrotermales/microbiología , Redes y Vías Metabólicas , Tipificación Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
19.
ISME J ; 14(4): 1042-1056, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988474

RESUMEN

Surveys of 16S rRNA gene sequences derived from marine sediments have indicated that a widely distributed group of Gammaproteobacteria, named "JTB255-Marine Benthic Group" (now the candidate order Woeseiales), accounts for 1-22% of the retrieved sequences. Despite their ubiquity in seafloor communities, little is known about their distribution and specific ecological niches in the deep sea, which constitutes the largest biome globally. Here, we characterized the phylogeny, environmental distribution patterns, abundance, and metabolic potential of Woeseiales bacteria with a focus on representatives from the deep sea. From a phylogenetic analysis of publicly available 16S rRNA gene sequences (≥1400 bp, n = 994), we identified lineages of Woeseiales with greater prevalence in the deep sea than in coastal environments, a pattern corroborated by the distribution of 16S oligotypes recovered from 28 globally distributed sediment samples. Cell counts revealed that Woeseiales bacteria accounted for 5 ± 2% of all microbial cells in deep-sea surface sediments at 23 globally distributed sites. Comparative analyses of a genome, metagenome bins, and single-cell genomes suggested that members of the corresponding clades are likely to grow on proteinaceous matter, potentially derived from detrital cell membranes, cell walls, and other organic remnants in marine sediments.


Asunto(s)
Gammaproteobacteria/fisiología , Sedimentos Geológicos/microbiología , Bacterias/genética , Gammaproteobacteria/metabolismo , Variación Genética , Metagenoma , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
mBio ; 10(4)2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431553

RESUMEN

Crude oil and gases in the seabed provide an important energy source for subsurface microorganisms. We investigated the role of archaea in the anaerobic degradation of non-methane alkanes in deep-sea oil seeps from the Gulf of Mexico. We identified microscopically the ethane and short-chain alkane oxidizers "Candidatus Argoarchaeum" and "Candidatus Syntrophoarchaeum" forming consortia with bacteria. Moreover, we found that the sediments contain large numbers of cells from the archaeal clade "Candidatus Methanoliparia," which was previously proposed to perform methanogenic alkane degradation. "Ca. Methanoliparia" occurred abundantly as single cells attached to oil droplets in sediments without apparent bacterial or archaeal partners. Metagenome-assembled genomes of "Ca. Methanoliparia" encode a complete methanogenesis pathway including a canonical methyl-coenzyme M reductase (MCR) but also a highly divergent MCR related to those of alkane-degrading archaea and pathways for the oxidation of long-chain alkyl units. Its metabolic genomic potential and its global detection in hydrocarbon reservoirs suggest that "Ca. Methanoliparia" is an important methanogenic alkane degrader in subsurface environments, producing methane by alkane disproportionation as a single organism.IMPORTANCE Oil-rich sediments from the Gulf of Mexico were found to contain diverse alkane-degrading groups of archaea. The symbiotic, consortium-forming "Candidatus Argoarchaeum" and "Candidatus Syntrophoarchaeum" are likely responsible for the degradation of ethane and short-chain alkanes, with the help of sulfate-reducing bacteria. "Ca. Methanoliparia" occurs as single cells associated with oil droplets. These archaea encode two phylogenetically different methyl-coenzyme M reductases that may allow this organism to thrive as a methanogen on a substrate of long-chain alkanes. Based on a library survey, we show that "Ca. Methanoliparia" is frequently detected in oil reservoirs and may be a key agent in the transformation of long-chain alkanes to methane. Our findings provide evidence for the important and diverse roles of archaea in alkane-rich marine habitats and support the notion of a significant functional versatility of the methyl coenzyme M reductase.


Asunto(s)
Alcanos/metabolismo , Anaerobiosis/fisiología , Euryarchaeota/metabolismo , Hidrocarburos/metabolismo , Metano/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Euryarchaeota/clasificación , Euryarchaeota/genética , Ácidos Grasos/metabolismo , Sedimentos Geológicos/microbiología , Golfo de México , Metagenómica , Yacimiento de Petróleo y Gas/microbiología , Oxidación-Reducción , Oxidorreductasas , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...